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Introduction
Computational models of synchronization
• Humans tend to anticipate the beat when they 

synchronize with sound: Anticipatory synchronization 
(Repp et al., 2011)

• Delay-coupled nonlinear dynamical systems can 
capture anticipatory synchronization (Stepp & Turvey, 2010; 
Voss, 2000)

• Coupling strength and time delay can model group 
synchronization (Demos et al., 2019)

Model validation
• Overfitting problem: models with more parameters 

produce better fits, but may not generalize well to 
new data (Hastie et al., 2017)

• Cross-validation: divide data into matched Train and 
Test sets; train model parameters on Train set; 
compare Train and Test fits (Hastie et al., 2017; James et al., 2013)

• Use data from other participants (surrogates) to 
evaluate error in model fits to Test data

Results Discussion
Cross-validation of delay-coupling model
• Delay-coupling model can generalize: Fits to Test data 

significantly better than fits to Surrogate data

Delay-coupling vs linear model
• Linear model (without coupling) performed worse 

than nonlinear model (with coupling and time delay) 
in fitting to synchronization behavior

• Linear model can help detect when a participant is 
not coupled (linear model >= delay-coupling model)

• Linear model yielded similar correlations with Test 
and Surrogate data
• Suggests linear model generalizes less well

Effect of social context on model fits
• Model’s predicted asynchronies match observed data 

better for the Solo task than for the Joint task
• Suggests that the social presence of partner may 

influence unaccounted model variance

Future directions
• Further investigate influences of social context
• Test effects of musical training on model fits
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Method

Horizontal dashed line: correlation between observed Train data and observed Test data
= Expected value that the model can reach for Test data

• Good fit for Test data, underfitting for Surrogate data

Delay-coupling model Linear model

ANOVA (Rate x Condition x Model x Set) on z-transformed correlation coefficients (r)
• Delay-coupling model: Train > Test > Surrogate (p’s < 0.03)
• Linear model: Train > Test = Surrogate (p < .0001, p = .16)
• Delay-coupling model > Linear model (p < .001)
• Solo > Joint (p = .03)

Model application to Test and Surrogate data
Asynchronies predicted by model (fitted to Train data) correlated with observed asynchronies 

(from Train, Test, or Surrogate set)
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Experiment
Participants: 24 adults assigned to 12 pairs:
Musically untrained (6 pairs) and trained (6 pairs)

Spontaneous Production Rate (SPR) task
• Participant taps melody at a steady, uncued rate
Synchronization tasks
• Participant taps melody in sync with auditory cue 

set at participant’s own SPR or their partner’s SPR)

𝜃̇! = 𝜔"#$ Driver oscillator (metronome cue)
𝜃̇% = 𝜔 + 𝜅 (𝜃! − 𝜃%,') Driven oscillator (tapper)
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Modelling
Delay-coupling model (nonlinear)

Linear model
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Test data Trial-matched Surrogate data
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⋯

Surrogate analysis
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⋯

Train Test

Cross-validation
Data divided into balanced Train and Test sets

Example
Trial:

Partner A

Partner B

Model parameters: Intrinsic frequency (SPR task)
Spontaneous production rates are consistent across trials and capture intrinsic frequency
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Delay-coupling model (nonlinear)

Linear model
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Model fits to Train data
• Optimal time delay (𝜏 = 10.15) was fixed across delay-coupling models and participants
• Root mean squared error (RMSE) used to select best model fits
• 7 participants showed no coupling (RMSE of linear model ≤ RMSE of delay-coupling), removed

Joint Synchronization
Cued Rate = Partner’s Intrinsic Frequency

Solo Synchronization 
Cued Rate = Partner’s Intrinsic Frequency

Training Testing


