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Introduction

Computational models of synchronization

* Humans tend to anticipate the beat when they

synchronize with sound: Anticipatory synchronization
(Repp et al., 2011)

* Delay-coupled nonlinear dynamical systems can

capture anticipatory synchronization (stepp & Turvey, 2010;
Voss, 2000)

 Coupling strength and time delay can model group
synchronization (pemos et al., 2019)

Model validation

* Overfitting problem: models with more parameters
produce better fits, but may not generalize well to
new data (Hastie et al., 2017)

* Cross-validation: divide data into matched Train and
Test sets; train model parameters on Train set;
compare Train and Test fits (Hastie et al.,, 2017; James et al., 2013)

 Use data from other participants (surrogates) to
evaluate error in model fits to Test data

Modelling

Delay-coupling model (nonlinear)
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Linear model

01 = Wpet Driver oscillator (metronome cue)
6, =w Driven oscillator (tapper)
Experiment

Participants: 24 adults assigned to 12 pairs:

Musically untrained (6 pairs) and trained (6 pairs)

Spontaneous Production Rate (SPR) task

* Participant taps melody at a steady, uncued rate

Synchronization tasks

* Participant taps melody in sync with auditory cue
set at participant’s own SPR or their partner’s SPR)

Solo synchronization Joint (turn-taking) synchronization
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Cross-validation

Data divided into balanced and Test sets
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Surrogate analysis
Test data

Partner A from Pair 1

Trial-matched data

Partner B from Pair 2

Partner B from Pair 12

Partner B from Pair 1 \ Partner A from Pair 2

Partner A from Pair i2

Model parameters: Intrinsic frequency (SPR task)

Spontaneous production rates are consistent across trials and capture intrinsic frequency
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Participant

Model fits to Train data

 Optimal time delay (t = 10.15) was fixed across delay-coupling models and participants
 Root mean squared error (RMSE) used to select best model fits

e 7 participants showed no coupling (RMSE of linear model < RMSE of delay-coupling), removed
Testing
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Model application to Test and Surrogate data

Asynchronies predicted by model (fitted to data) correlated with observed asynchronies

(from , Test, or set)
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Horizontal dashed line: correlation between observed data and observed Test data
= Expected value that the model can reach for Test data

* Good fit for Test data, underfitting for data

ANOVA (Rate x Condition x Model x Set) on z-transformed correlation coefficients (r)
* Delay-coupling model: > Test > (p’s < 0.03)

* Linear model: > Test = (p <.0001, p =.16)

e Delay-coupling model > Linear model (p < .001)

e Solo > Joint (p =.03)
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Cross-validation of delay-coupling model

* Delay-coupling model can generalize: Fits to Test data
significantly better than fits to data

Delay-coupling vs linear model

* Linear model (without coupling) performed worse
than nonlinear model (with coupling and time delay)
in fitting to synchronization behavior

* Linear model can help detect when a participant is
not coupled (linear model >= delay-coupling model)

* Linear model yielded similar correlations with Test
and data

e Suggests linear model generalizes less well

Effect of social context on model fits

* Model’s predicted asynchronies match observed data
better for the Solo task than for the Joint task

e Suggests that the social presence of partner may
influence unaccounted model variance

Future directions

* Further investigate influences of social context
e Test effects of musical training on model fits
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