

Developing Methods to Cross-validate Nonlinear Models of Synchronization

Michelle Wang¹, Valentin Bégel¹, Alexander P. Demos², Caroline Palmer¹

¹ Sequence Production Lab, Department of Psychology, McGill University ² Department of Psychology, University of Illinois at Chicago

Introduction

Computational models of synchronization

- Humans tend to anticipate the beat when they synchronize with sound: Anticipatory synchronization (Repp et al., 2011)
- Delay-coupled nonlinear dynamical systems can capture anticipatory synchronization (Stepp & Turvey, 2010;
- Coupling strength and time delay can model group synchronization (Demos et al., 2019)

Model validation

- Overfitting problem: models with more parameters produce better fits, but may not generalize well to new data (Hastie et al., 2017)
- Cross-validation: divide data into matched Train and Test sets; train model parameters on Train set; compare Train and Test fits (Hastie et al., 2017; James et al., 2013)
 - Use data from other participants (surrogates) to evaluate error in model fits to Test data

Method

Modelling

Delay-coupling model (nonlinear)

Driver oscillator (metronome cue) $\theta_1 = \omega_{met}$ $\dot{\theta}_2 = \omega + \kappa \left(\theta_1 - \theta_{2,\tau}\right)$ Driven oscillator (tapper)

Linear model

Driver oscillator (metronome cue) $\theta_1 = \omega_{met}$ Driven oscillator (tapper) $\theta_2 = \omega$

Experiment

Participants: 24 adults assigned to 12 pairs: Musically untrained (6 pairs) and trained (6 pairs)

Spontaneous Production Rate (SPR) task

- Participant taps melody at a steady, uncued rate Synchronization tasks
- Participant taps melody in sync with auditory cue set at participant's own SPR or their partner's SPR)

Cross-validation

Data divided into balanced Train and Test sets

Surrogate analysis

Results

Model parameters: Intrinsic frequency (SPR task)

Spontaneous production rates are consistent across trials and capture intrinsic frequency

Model fits to Train data

- Optimal time delay ($\tau=10.15$) was fixed across delay-coupling models and participants
- Root mean squared error (RMSE) used to select best model fits
- 7 participants showed no coupling (RMSE of linear model \leq RMSE of delay-coupling), removed

Model application to Test and Surrogate data

Asynchronies predicted by model (fitted to Train data) correlated with observed asynchronies (from Train, Test, or Surrogate set)

Horizontal dashed line: correlation between observed Train data and observed Test data = Expected value that the model can reach for Test data

Good fit for Test data, underfitting for Surrogate data

ANOVA (Rate x Condition x Model x Set) on z-transformed correlation coefficients (r)

- **Delay-coupling model: Train > Test > Surrogate** (p's < 0.03)
- Linear model: Train > Test = Surrogate (p < .0001, p = .16)
- Delay-coupling model > Linear model (p < .001)
- Solo > Joint (p = .03)

Discussion

Cross-validation of delay-coupling model

 Delay-coupling model can generalize: Fits to Test data significantly better than fits to Surrogate data

Delay-coupling vs linear model

- Linear model (without coupling) performed worse than nonlinear model (with coupling and time delay) in fitting to synchronization behavior
- Linear model can help detect when a participant is not coupled (linear model >= delay-coupling model)
- Linear model yielded similar correlations with Test and Surrogate data
 - Suggests linear model generalizes less well

Effect of social context on model fits

- Model's predicted asynchronies match observed data better for the Solo task than for the Joint task
 - Suggests that the social presence of partner may influence unaccounted model variance

Future directions

- Further investigate influences of social context
- Test effects of musical training on model fits

References

Demos, A. P., Layeghi, H., Wanderley, M. M., & Palmer, C. (2019). Staying together: a bidirectional delaycoupled approach to joint action. Cognitive *Science*, 43, e12766.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2017). The elements of statistical learning: data mining, *inference, and prediction*. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer.

Repp, B. H., London, J., & Keller, P. E. (2011). Perceptionproduction relationships and phase correction in synchronization with two-interval rhythms. *Psychological Research*, 75, 227–42.

Stepp, N., & Turvey, M. T. (2010). On strong anticipation. Cognitive Systems Research, 11(2), 148–164.

Voss, H. U. (2000). Anticipating chaotic synchronization. *Physical Review E, 61*(5a), 5115– 5119.

Acknowledgments

We thank Sasha Sorger Brock, Jocelyne Chan and Vivian Qiang for assistance with this project.

Chaires de recherche du Canada

